Wednesday, 23 August 2017

Moving Average Dengan Spss


Uji weiß dilakukan dengan meregresikan residual kuadrat sebagai variabel dependen dengan variabel dependen ditambah dengan kuadrat variabel independen, kemudian ditambahkan lagi dengan perkalian dua variabel independen. Prosedur pengujian dilakukan dengan hipotesis sebagai berikut: H 0. Tidak ada heterokedastisitas H 1 Ada heterekodastisitas Jika 5, Maka tolak H 0 jika obsR-Quadrat gt X 2 atau P-Wert lt. Untuk melakukan uji weiß kita akan gunakan contoh Daten pada bahasan uji heteroskedastisitas dengan metode grafik. Anda dapat melihatnya disinigtgtgt 1. Jalankan langkah-langkah yang sama persis pada bahasan Regresi dengan Eau pada bahasan sebelumnya (jika belum mengerti anda bisa melihatnya langkahnya disini gtgt) 2. Setelah didapatkan hasil analisis regresilinier. Anda dapat memilih ANSICHT 8211 RESIDUAL TEST 8211 WEISSE HETEROSCEDASTIZITÄT (cross term). Seperti berikut ini: 3. Setela itu akan dikeluarkan OUTPUT sebagai berikut: Hasil Ausgabe menunjukkan nilai ObsR-squared adalah sebesar 5,68 sedangkan nilai probabilitas (chi-square) adalah 0,68 (lebih besar daripada 0,05), dengan demikian kita Dapat menerima hipotesis nol bahwa Daten tidak mengandung masalah heteroskedastisitas. Download materi ini versi pdf dibawah gtgtgtNov 26, 2009 Metode Glättung merupakan salah satu jenis teknik yang digunakan dalam analisis zeitreihe (runtun waktu) untuk memberikan peramalan jangka pendek. Dalam melakukan Glättung (penghalusan) terhadap Daten, nilai masa lalu digunakan untuk mendapatkan nilai yang dihaluskan untuk Zeitreihe. Nilai Yang telah dihaluskan ini kemudian diekstrapolasikan untuk meramal nilai masa depan. Tehnik Yang Kita Kenal Dalam Metode Glättung yaitu Einfache Verschiebung Durchschnittlich Exponential Glättung. Pada Halaman Ini, Saya Hanya Akan Membranen Tentang Einfache Moving Average. Simple Moving Durchschnittliche Daten Zeitreihe seringkali mengandung ketidakteraturan Yang akan menyebabkan prediksi Yang beragam. Untuk menghilangkan efek yang tidak diinginkan dari ketidak-teraturan ini, metode einfaches gleitendes durchschnittliches mengambil beberapa nilai yang sedang diamati, memberikan rataan, dan menggunakannya untuk memprediksi nilai untuk periode waktu yang akan datang. Semakin tinggi jumlah pengamatan yang dilakukan, maka pengaruh metode gleitenden Durchschnitt akan lebih baik. Meningkatkan jumlah observasi akan menghasilkan nilai peramalan yang lebih baik karena ia cenderung meminimalkan efek-efek pergerakan yang tidak biasa yang muncul pada Daten. Umzug durchschnittlich juga mempunyai dua kelemahan yaitu memerlukan Daten masa lalu dalam jumlah besar untuk ketepatan prediksi, dan masing-masing observasi diberikan bobot yang sama, ini melanggar bukti empiris bahwa semakin observasi terbaru seharusnya lebih dekat dengan nilai masa depan maka kepentingan bobotnya akan meningkat pula. Aplikasi Metode Moving Durchschnittliche Dengan Software IBM SPSS 23 Dapat Doughnat Pada Contoh Berikut Ini: Berikut Kita Memiliki Daten Kunjungan Ke Bali Dari Januar 2008 Hingga Juni 2015 Dalam Format Excel, Daten Diambil Dari Website Dinas Pariwisata Provinsi Bali: 1. Langkah Pertama Adalah Memasukkan Daten ke Dalam Arbeitsblatt SPSS 23 sebagai berikut: Datenansicht. (Kiudian pada menubar SPSS 23 pilih Transform 8211 Schaffen Sie Zeitreihe Seperti Gambar: 3. Setelah itu akan muncul kotak dialog berikut, pilih Besuch dan Klik panah sehingga variabel besuch berpindah ke kolom variabel 8211 Neu Variabel di sebelah kanan. 4. Setelah itu Pilih Pada Kotak Funktion Pilih Zentriert Moving Average, Atau Bisa Juga Prior Moving Average. 5. Kemudian isikan span dengan 3, dan klik ändern. Span diisi dengan angka 3 artinya mengalami proses 3 kali glättung yang biasa kita kenal juga dengan Gewichteter beweglicher Durchschnitt. Adapun Proses 1 Dan 2 Kali Glättung Kita Sebut Single Moving Durchschnittlich Dan Double Moving Average. Jangan lupa untuk klik ändern agar variabel visit1 berubah menjadi visi3, kemudian ok. 6. Ausgabe Yang Didapat Dari Metode Zentriert Moving Durchschnittlich 8211 Gewichtetes Verschieben Durchschnittlich Adalah Sebagai Berichut: Dari Ausgabediatas, Dapat Diketahui Bahwa Kunjungan Pada Bulan-Bulan Berikutnya Dapat Kita Lihat Dari Variabel Baru Yang Dihasilkan Dari Zeitreihe Analyse Metode zentriert gleitend Durchschnitt - gewichtet bewegt Durchschnittlich Demikian juga jika kita memilih vor gleitender Durchschnitt, keduanya merupakan metode einfach gleitende durchschnittliche dengan Span 3, maka hasil peramalannya akan sama. (Yoz) Aplikasi Metode Exponential Glättung dengan SPSS akan dibahas pada halaman selanjutnya gtgtgt Geschrieben von ariyoso Teori amp Konsep Statistik Konsep Variabel Kualitatif Dan Kuantitatif Tip Daten Statistik Deskriptif Konsep Parametrik Dan Nicht Parametrik Statistika Inferensia Penyusunan Hipoteis Teknik Pengukuran Statistik Teknik Sampling Sebaran Probabilitas Diskret Sebaran Normal Sebaran Binomial Sebaran Poisson Transformasi Daten Korelasi Bivariat Pemaparan Daten Kualitatif dengan Tabulasi Silang neu IBM SPSS Ver.23Tag: peramalan dengan SPSS Metode Smoothing merupakan salah satu jenis teknik yang digunakan dalam analisis zeitreihe (runtun waktu) untuk memberikan peramalan jangka pendek. Dalam melakukan Glättung (penghalusan) terhadap Daten, nilai masa lalu digunakan untuk mendapatkan nilai yang dihaluskan untuk Zeitreihe. Nilai Yang telah dihaluskan ini kemudian diekstrapolasikan untuk meramal nilai masa depan. Tehnik Yang Kita Kenal Dalam Metode Glättung yaitu Einfache Verschiebung Durchschnittlich Exponential Glättung. Pada Halaman Ini, Saya Hanya Akan Membranen Tentang Einfache Moving Average. Simple Moving Durchschnittliche Daten Zeitreihe seringkali mengandung ketidakteraturan Yang akan menyebabkan prediksi Yang beragam. Untuk menghilangkan efek yang tidak diinginkan dari ketidak-teraturan ini, metode einfaches gleitendes durchschnittliches mengambil beberapa nilai yang sedang diamati, memberikan rataan, dan menggunakannya untuk memprediksi nilai untuk periode waktu yang akan datang. Semakin tinggi jumlah pengamatan yang dilakukan, maka pengaruh metode gleitenden Durchschnitt akan lebih baik. Meningkatkan jumlah observasi akan menghasilkan nilai peramalan yang lebih baik karena ia cenderung meminimalkan efek-efek pergerakan yang tidak biasa yang muncul pada Daten. Umzug durchschnittlich juga mempunyai dua kelemahan yaitu memerlukan Daten masa lalu dalam jumlah besar untuk ketepatan prediksi, dan masing-masing observasi diberikan bobot yang sama, ini melanggar bukti empiris bahwa semakin observasi terbaru seharusnya lebih dekat dengan nilai masa depan maka kepentingan bobotnya akan meningkat pula. Aplikasi Metode Moving Durchschnittliche Dengan Software IBM SPSS 23 Dapat Doughnat Pada Contoh Berikut Ini: Berikut Kita Memiliki Daten Kunjungan Ke Bali Dari Januar 2008 Hingga Juni 2015 Dalam Format Excel, Daten Diambil Dari Website Dinas Pariwisata Provinsi Bali: 1. Langkah Pertama Adalah Memasukkan Daten ke Dalam Arbeitsblatt SPSS 23 sebagai berikut: Datenansicht. (Kiudian pada menubar SPSS 23 pilih Verwandeln Schaffen Sie Zeitreihe Seperti Gambar: 3. Setela itu akan muncul kotak dialog berikut, pilih Besuch dan klik Panah sehingga variabel besuchen berpindah ke kolom variabel Neu Variabel di sebelah kanan. 4. Setelah itu Pilih Pada Kotak Funktion Pilih Zentriert Moving Average, Atau Bisa Juga Prior Moving Average. 5. Kemudian isikan span dengan 3, dan klik ändern. Span diisi dengan angka 3 artinya mengalami proses 3 kali glättung yang biasa kita kenal juga dengan Gewichteter beweglicher Durchschnitt. Adapun Proses 1 Dan 2 Kali Glättung Kita Sebut Single Moving Durchschnittlich Dan Double Moving Average. Jangan lupa untuk klik ändern agar variabel visit1 berubah menjadi visi3, kemudian ok. 6. Ausgang Yang Didapat Dari Metode Zentriert Moving Durchschnittlich Gewichtet Moving Durchschnittlich Adalah Sebagai Berikut: Dari Ausgang Diatas, Dapat Diketahui Bahwa Kunjungan Pada Bulan-Bulan Berikutnya Dapat Kita Lihat Dari Variabel Baru Yang Dihasilkan Dari Zeitreihe Analyse Metode zentriert gleitenden Durchschnitt 8211 gewichteten gleitenden Durchschnitt . Demikian juga jika kita memilih vorwärts gleitend Durchschnitt, keduanya merupakan metode einfach gleitende durchschnittliche dengan span 3, maka hasil peramalannya akan sama. (Yoz) Aplikasi Metode Exponential Glättung dengan SPSS akan dibahas pada bahasan selanjutnya Besucher S4LForecasting Metode gewichtet bewegende durchschnittliche Metode Glättung merupakan salah satu Jenis teknik yang digunakan dalam analisis zeitreihe (runtun waktu) untuk memberikan peramalan jangka pendek. Dalam melakukan Glättung (penghalusan) terhadap Daten, nilai masa lalu digunakan untuk mendapatkan nilai yang dihaluskan untuk Zeitreihe. Nilai Yang telah dihaluskan ini kemudian diekstrapolasikan untuk meramal nilai masa depan. Tehnik Yang Kita Kenal Dalam Metode Glättung yaitu Einfache Verschiebung Durchschnittlich Exponential Glättung. Pada Halaman Ini, Saya Hanya Akan Membranen Tentang Einfache Moving Average. Simple Moving Durchschnittliche Daten Zeitreihe seringkali mengandung ketidakteraturan Yang akan menyebabkan prediksi Yang beragam. Untuk menghilangkan efek yang tidak diinginkan dari ketidak-teraturan ini, metode einfaches gleitendes durchschnittliches mengambil beberapa nilai yang sedang diamati, memberikan rataan, dan menggunakannya untuk memprediksi nilai untuk periode waktu yang akan datang. Semakin tinggi jumlah pengamatan yang dilakukan, maka pengaruh metode gleitenden Durchschnitt akan lebih baik. Meningkatkan jumlah observasi akan menghasilkan nilai peramalan yang lebih baik karena ia cenderung meminimalkan efek-efek pergerakan yang tidak biasa yang muncul pada Daten. Umzug durchschnittlich juga mempunyai dua kelemahan yaitu memerlukan Daten masa lalu dalam jumlah besar untuk ketepatan prediksi, dan masing-masing observasi diberikan bobot yang sama, ini melanggar bukti empiris bahwa semakin observasi terbaru seharusnya lebih dekat dengan nilai masa depan maka kepentingan bobotnya akan meningkat pula. Aplikasi Metode Moving Durchschnittliche Dengan Software IBM SPSS 23 Dapat Doughnat Pada Contoh Berikut Ini: Berikut Kita Memiliki Daten Kunjungan Ke Bali Dari Januar 2008 Hingga Juni 2015 Dalam Format Excel, Daten Diambil Dari Website Dinas Pariwisata Provinsi Bali: 1. Langkah Pertama Adalah Memasukkan Daten ke Dalam Arbeitsblatt SPSS 23 sebagai berikut: Datenansicht. (Kiudian pada menubar SPSS 23 pilih Verwandeln Schaffen Sie Zeitreihe Seperti Gambar: 3. Setela itu akan muncul kotak dialog berikut, pilih Besuch dan klik Panah sehingga variabel besuchen berpindah ke kolom variabel Neu Variabel di sebelah kanan. 4. Setelah itu Pilih Pada Kotak Funktion Pilih Zentriert Moving Average, Atau Bisa Juga Prior Moving Average. 5. Kemudian isikan span dengan 3, dan klik ändern. Span diisi dengan angka 3 artinya mengalami proses 3 kali glättung yang biasa kita kenal juga dengan Gewichteter beweglicher Durchschnitt. Adapun Proses 1 Dan 2 Kali Glättung Kita Sebut Single Moving Durchschnittlich Dan Double Moving Average. Jangan lupa untuk klik ändern agar variabel visit1 berubah menjadi visi3, kemudian ok. 6. Ausgang Yang Didapat Dari Metode Zentriert Moving Durchschnittlich Gewichtet Moving Durchschnittlich Adalah Sebagai Berikut: Dari Ausgang Diatas, Dapat Diketahui Bahwa Kunjungan Pada Bulan-Bulan Berikutnya Dapat Kita Lihat Dari Variabel Baru Yang Dihasilkan Dari Zeitreihe Analyse Metode zentriert gleitenden Durchschnitt 8211 gewichteten gleitenden Durchschnitt . Demikian juga jika kita memilih vor gleitenden Durchschnitt, keduanya merupakan metode einfach gleitende durchschnittliche Dengan Span 3, Maka hasil peramalannya akan sama. (Yoz) Aplikasi Metode exponentielle Glättung dengan SPSS akan dibahas pada bahasan selanjutnya

No comments:

Post a Comment